
09 570684 Ch06.qxd 3/31/04 2:52 PM Page 71

Chapter 6: C More I/O with gets() and puts() 71
Feel free to make the preceding modifications to your INSULT3.C program in
your editor. Save the changes to disk as INSULT4.C. Compile. Run.

Name some jerk you know:
David
Yeah, I think
David
is a jerk, too.

The output looks funky, like one of those “you may be the first person on
your block” sweepstakes junk mailers. But the program works the way it was
intended.

� Rather than replace printf() with puts(), you have to rethink your
program’s strategy. For one, puts() automatically sticks a newline on
the end of a string it displays. No more strings ending in \n! Second,
puts() can display only one string variable at a time, all by itself, on its
own line. And, last, the next bit of code shows the program the way it
should be written by using only puts() and gets().

� You must first “declare” a string variable in your program by using the
char keyword. Then you must stick something in the variable, which
you can do by using the scanf() or gets function. Only then does dis­
playing the variable’s contents by using puts() make any sense.

� Do not use puts() with a nonstring variable. The output is weird. (See
Chapter 8 for the lowdown on variables.)

When to use puts()
When to use printf()

� Use puts() to display a single line of

� Use puts() to display the contents of a
string variable on a line by itself.

� Use printf() to display the contents of a
variable nestled in the middle of another
string.

� Use printf() to display the contents of
more than one variable at a time.

� Use printf()
newline (Enter) character to be displayed
after every line, such as when you’re
prompting for input.

� Use printf() when fancy formatted
output is required.

text — nothing fancy.

when you don’t want the

